The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128535 a(n) = F(n)*L(n-2) where F = Fibonacci and L = Lucas numbers. 6
 0, -1, 2, 2, 9, 20, 56, 143, 378, 986, 2585, 6764, 17712, 46367, 121394, 317810, 832041, 2178308, 5702888, 14930351, 39088170, 102334154, 267914297, 701408732, 1836311904, 4807526975, 12586269026, 32951280098, 86267571273, 225851433716, 591286729880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1): if k=0 the sequence is A001906, if k=1 it is A081714. For n>2, a(n) is twice the area of the triangle with vertices at (F(n-3), F(n-2)), (F(n-1), F(n)), and (L(n), L(n-1)), where F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, May 22 2014 a(n) is the maximum area of a quadrilateral with lengths of sides in order L(n-2), L(n-2), F(n), F(n) for n>2. - J. M. Bergot, Jan 28 2016 REFERENCES Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = F(2*(n-1)) - (-1)^(n+1), assuming F(0)=0 and L(0)=2. From R. J. Mathar, Apr 16 2009: (Start) a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). G.f.: x*(-1+4*x)/((1+x)*(x^2-3*x+1)). (End) a(n+1) = - A116697(2*n). - Reinhard Zumkeller, Feb 25 2011 a(-n) = - A128533(n). - Michael Somos, May 26 2014 0 = a(n)*(+4*a(n) + a(n+1) - 17*a(n+2)) + a(n+1)*(-14*a(n+1) + a(n+2)) + a(n+2)*(+4*a(n+2)) for all n in Z. - Michael Somos, May 26 2014 a(n) = ((-1)^n+(2^(-1-n)*(-(3-sqrt(5))^n*(3+sqrt(5))-(-3+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016 EXAMPLE a(7) = 143 because F(7)*L(5) = 13*11. G.f. = -x + 2*x^2 + 2*x^3 + 9*x^4 + 20*x^5 + 56*x^6 + 143*x^7 + ... MAPLE a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<0, -1, 2>>)[1, 1]: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 28 2016 MATHEMATICA Table[Fibonacci[i]LucasL[i-2], {i, 0, 30}] (* Harvey P. Dale, Feb 16 2011 *) LinearRecurrence[{2, 2, -1}, {0, -1, 2}, 40] (* Vincenzo Librandi, Feb 20 2013 *) a[ n_] := Fibonacci[2 n - 2] + (-1)^n; (* Michael Somos, May 26 2014 *) PROG (MAGMA) [Fibonacci(n)*Lucas(n-2): n in [0..30]]; // Vincenzo Librandi, Feb 20 2013 (PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 2, 2]^n*[0; -1; 2])[1, 1] \\ Charles R Greathouse IV, Feb 01 2016 (PARI) a(n) = round(((-1)^n+(2^(-1-n)*(-(3-sqrt(5))^n*(3+sqrt(5))-(-3+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016 CROSSREFS Cf. A001906, A081714, A128533, A128534. Sequence in context: A007024 A019223 A192302 * A180753 A220971 A308519 Adjacent sequences:  A128532 A128533 A128534 * A128536 A128537 A128538 KEYWORD sign,easy AUTHOR Axel Harvey, Mar 09 2007 EXTENSIONS More terms from Harvey P. Dale, Feb 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)