

A128506


Numerators of partial sums for a series for 3*sqrt(2)*(Pi^3)/2^7.


3



1, 28, 3473, 1187864, 32115203, 42776591068, 93938569006771, 93911487925744, 461478538827646397, 3165730339378740709148, 452199680641199918039, 5501473517781557885536888, 687727017229797976494536483
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The denominators are given in A128507.
The limit n > infinity of the rationals r(n) defined below is 3*sqrt(2)*(Pi^3)/2^7 = 1.027756...
This series is obtained from the Fourier series for y(x)= x*(Pix) if 0<=x<=Pi and y(x)= (Pix)*(2*Pix) if Pi<=x<=2*Pi evaluated at x=Pi/4.


LINKS

Table of n, a(n) for n=0..12.
W. Lang, Rationals and limit.


FORMULA

a(n)=numerator(r(n)) with the rationals r(n):=sum(S(2*k,sqrt(2))/(2*k+1)^3,k=0..n) with Chebyshev's SPolynomials S(2*k,sqrt(2))=[1,1,1,1] periodic sequence with period 4. See A057077.


EXAMPLE

Rationals r(n): [1, 28/27, 3473/3375, 1187864/1157625, 32115203/31255875,...].
3*sqrt(2)*(Pi^3)/2^7 = 1/1^3 + 1/3^3  1/5^3  1/7^3 + 1/9^3 + 1/11^3  1/13^3  1/15^3 + ...


CROSSREFS

Sequence in context: A232520 A061787 A235458 * A164655 A242449 A201099
Adjacent sequences: A128503 A128504 A128505 * A128507 A128508 A128509


KEYWORD

nonn,frac,easy


AUTHOR

Wolfdieter Lang Apr 04 2007


STATUS

approved



