login
A128500
Numerators of partial sums for a series for Pi/(3*sqrt(3)).
2
1, 1, 1, 3, 11, 11, 97, 159, 159, 187, 1777, 1777, 26181, 23321, 23321, 51647, 797919, 797919, 16521821, 15228529, 15228529, 16404249, 351431887, 351431887, 1876142299, 1761735699, 1761735699, 1867970399, 51196569971, 51196569971
OFFSET
0,4
COMMENTS
The denominators are given in A128501.
The limit n -> infinity of the rationals r(n) defined below is Pi/(3*sqrt(3)).
FORMULA
a(n)=numerator(r(n)) with the rationals r(n):=Sum_{k=0..n} ((-1)^k)*S(k,1)/(k+1) with Chebyshev's S-Polynomials S(k,1)=[1,1,0,-1,-1,0] periodic sequence with period 6. See A010892.
EXAMPLE
Rationals: [1, 1/2, 1/2, 3/4, 11/20, 11/20, 97/140, 159/280, 159/280, 187/280,...]
Pi/(3*sqrt(3))=+1/1 -1/2 +1/4 -1/5 +1/7 -1/8 +1/10 -1/11 +1/13 -+
CROSSREFS
Sequence in context: A059200 A232038 A072980 * A365037 A043051 A024545
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang Apr 04 2007
STATUS
approved