OFFSET
0,3
COMMENTS
Unsigned, this is the repeated sequence A001752.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,-5,5,-10,10,-10,10,-5,5,-1,1).
FORMULA
G.f.: -1 / ((x-1)*(x^2+1)^5). - Corrected by Colin Barker, Mar 14 2015
a(2*k) = a(2*k+1) = ((-1)^k)*A001752(n), k>=0.
a(n) = ((2*n^4+44*n^3+334*n^2+1012*n+993)*(-1)^((2*n-1+(-1)^n)/4)+(4*n^3+66*n^2+332*n+495)*(-1)^((6*n-1+(-1)^n)/4)+48)/1536. - Luce ETIENNE, Mar 14 2015
MATHEMATICA
LinearRecurrence[{1, -5, 5, -10, 10, -10, 10, -5, 5, -1, 1}, {1, 1, -4, -4, 11, 11, -24, -24, 46, 46, -80}, 60] (* Harvey P. Dale, Aug 26 2023 *)
PROG
(PARI) Vec(-1/((x-1)*(x^2+1)^5) + O(x^100)) \\ Colin Barker, Mar 14 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Apr 04 2007
STATUS
approved