login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128494 Coefficient table for sums of Chebyshev's S-Polynomials. 4
1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, -1, -2, 1, 1, 1, 2, -2, -3, 1, 1, 0, 2, 4, -3, -4, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, -2, -6, 7, 11, -5, -6, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, 3, 9, -13, -24, 16, 22, -7, -8, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, -3, -12, 22, 46, -40, -62, 29, 37, -9, -10, 1, 1, 1, 4, -12 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,13
COMMENTS
See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
This is a 'repetition triangle' based on a signed version of triangle A059260: a(2*p,2*k) = a(2*p+1,2*k) = A059260(p+k,2*k)*(-1)^(p+k) and a(2*p+1,2*k+1) = a(2*p+2,2*k+1) = A059260(p+k+1,2*k+1)*(-1)^(p+k), k >= 0.
LINKS
Wolfdieter Lang, First 15 rows
Per Alexandersson, Luis Angel González-Serrano, and Egor A. Maximenko, Mario Alberto Moctezuma-Salazar, Symmetric polynomials in the symplectic alphabet and their expression via Dickson-Zhukovsky variables, arXiv:1912.12725 [math.CO], 2019.
Per Alexandersson, Luis Angel González-Serrano, Egor A. Maximenko, and Mario Alberto Moctezuma-Salazar, Symmetric Polynomials in the Symplectic Alphabet and the Change of Variables z_j = x_j + x_j^(-1), The Elec. J. of Combinatorics (2021) Vol. 28, No. 1, #P1.56.
FORMULA
S(1;n,x) = Sum_{k=0..n} S(k,x) = Sum_{m=0..n} a(n,m)*x^m, n >= 0.
a(n,m) = [x^m](S(n,y)*S(n+1,y)/y) with y:=sqrt(2+x).
G.f. for column m: (x^m)/((1-x)*(1+x^2)^(m+1)), which shows that this is a lower diagonal matrix of the Riordan type, named (1/((1+x^2)*(1-x)), x/(1+x^2)).
From Wolfdieter Lang, Oct 16 2012: (Start)
a(n,m) = [x^m](1- (S(n+1,x) - S(n,x)))/(2-x). From the Binet - de Moivre formula for S and use of the geometric sum.
a(n,m) = [x^m](1- R(2*n+3,sqrt(2+x))/sqrt(2+x))/(2-x) with the monic integer T-polynomials R with coefficient triangle given in A127672. From the odd part of the bisection of the T-polynomials. (End)
EXAMPLE
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1 1
2: 0 1 1
3: 0 -1 1 1
4: 1 -1 -2 1 1
5: 1 2 -2 -3 1 1
6: 0 2 4 -3 -4 1 1
7: 0 -2 4 7 -4 -5 1 1
8: 1 -2 -6 7 11 -5 -6 1 1
9: 1 3 -6 -13 11 16 -6 -7 1 1
10: 0 3 9 -13 -24 16 22 -7 -8 1 1
... reformatted by Wolfdieter Lang, Oct 16 2012
Row polynomial S(1;4,x) = 1 - x - 2*x^2 + x^3 + x^4 = Sum_{k=0..4} S(k,x).
S(4,y)*S(5,y)/y = 3 - 13*y^2 + 16*y^4 - 7*y^6 + y^8, with y=sqrt(2+x) this becomes S(1;4,x).
From Wolfdieter Lang, Oct 16 2012: (Start)
S(1;4,x) = (1 - (S(5,x) - S(4,x)))/(2-x) = (1-x)*(2-x)*(1+x)*(1-x-x^2)/(2-x) = (1-x)*(1+x)*(1-x-x^2).
S(5,x) - S(4,x) = R(11,sqrt(2+x))/sqrt(2+x) = -1 + 3*x + 3*x^2 - 4*x^3 - x^4 + x^5. (End)
CROSSREFS
Row sums (signed): A021823(n+2). Row sums (unsigned): A070550(n).
Cf. A128495 for S(2; n, x) coefficient table.
The column sequences (unsigned) are, for m=0..4: A021923, A002265, A008642, A128498, A128499.
For m >= 1 the column sequences (without leading zeros) are of the form a(m, 2*k) = a(m, 2*k+1) = ((-1)^k)*b(m, k) with the sequences b(m, k), given for m=1..11 by A008619, A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808.
Sequence in context: A228431 A328702 A165620 * A257696 A110730 A198339
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, Apr 04 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 08:22 EDT 2024. Contains 371236 sequences. (Running on oeis4.)