|
|
A128465
|
|
Numbers n such that n divides the numerator of alternating Harmonic number H'((n+1)/2) = A058313((n+1)/2).
|
|
1
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For n>1 all 5 listed terms are primes. Numbers n such that n divides the numerator of alternating Harmonic number H'((n-1)/2) = A058313((n-1)/2) are listed in A128464(n) = {1073, 3511, ...}. Both known terms of A128464(n) are the Wieferich primes A001220(n) = {1093, 3511, ...} Primes p such that p^2 divides 2^(p-1) - 1.
|
|
LINKS
|
Table of n, a(n) for n=1..6.
Eric Weisstein's World of Mathematics, Harmonic Number
|
|
MATHEMATICA
|
f=0; Do[ f = f + (-1)^(n+1)*1/n; g = Numerator[f]; If[ IntegerQ[ g/(2n-1) ], Print[2n-1]], {n, 1, 3000} ]
|
|
CROSSREFS
|
Cf. A001008 = Wolstenholme numbers: numerator of harmonic number H(n)=Sum_{i=1..n} 1/i. Cf. A058313 = Numerator of the n-th alternating harmonic number H'(n). Cf. A001220 = Wieferich primes p: p^2 divides 2^(p-1) - 1. Cf. A128463, A128464, A125854, A121999.
Sequence in context: A308397 A308848 A109715 * A098967 A107140 A141746
Adjacent sequences: A128462 A128463 A128464 * A128466 A128467 A128468
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Alexander Adamchuk, Mar 10 2007
|
|
STATUS
|
approved
|
|
|
|