login
Quotients A122000(p-1) / (2^p - 1), where p = prime(n) for n > 1.
0

%I #9 Jun 11 2021 09:46:59

%S 1,882850585445281,

%T 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241

%N Quotients A122000(p-1) / (2^p - 1), where p = prime(n) for n > 1.

%C A014566(n) = n^n + 1 is a Sierpinski Number of the First Kind.

%C A014566(2^n - 1) is divisible by 2^n.

%C A122000(n) = ((2^n - 1)^(2^n - 1) + 1) / 2^n = A014566(2^n - 1) / 2^n = A081216(2^n - 1).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiNumberoftheFirstKind.html">Sierpinski Number of the First Kind</a>

%F a(n) = ((2^(prime(n)-1) - 1)^(2^(prime(n)-1)-1) + 1)/(2^(prime(n)-1)*(2^prime(n)-1)).

%Y Cf. A122000, A014566, A081216, A056009.

%K bref,nonn

%O 2,2

%A _Alexander Adamchuk_, Mar 03 2007