

A128434


Triangle read by rows, 0<=k<=n: T(n,k) = denominator of the maximum of the kth Bernstein polynomial of degree n; numerator is A128433.


5



1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

For n>0: Sum(A128433(n,k)/T(n,k): 0<=k<=n) = A090878(n)/A036505(n1);
T(n,nk) = T(n,k); T(n,0) = 1;
for n>0: A128433(n,1)/T(n,1) = A000312(n1)/A000169(n).


LINKS

Table of n, a(n) for n=0..49.
Eric Weisstein's World of Mathematics, Bernstein Polynomial


FORMULA

A128433(n,k)/T(n,k) = binomial(n,k) * k^k * (nk)^(nk) / n^n.


CROSSREFS

Sequence in context: A229962 A141601 A108558 * A176417 A119731 A155718
Adjacent sequences: A128431 A128432 A128433 * A128435 A128436 A128437


KEYWORD

nonn,tabl,frac


AUTHOR

Reinhard Zumkeller, Mar 03 2007


STATUS

approved



