login
a(n) = denominator of b(n): b(1)=1; b(n+1) = [b(1);b(2),...,b(n)]/b(n), where [...] is a continued fraction of rational terms.
1

%I #9 Sep 16 2015 04:56:50

%S 1,1,1,6,35,5772,88530295,13109586855583296,

%T 641514040130247702993686238424885,

%U 38794682422831176556784792608495170681619094988640304687341019712

%N a(n) = denominator of b(n): b(1)=1; b(n+1) = [b(1);b(2),...,b(n)]/b(n), where [...] is a continued fraction of rational terms.

%e a(6) = the denominator of b(6). b(6) = (1 +1/(1 +1/(2 +1/(5/6 +35/74))))*35/74 = 4735/5772.

%t a = {1}; Do[AppendTo[a, FromContinuedFraction[a]/a[[ -1]]], {10}]; Denominator[a] (* _Stefan Steinerberger_, Oct 24 2007 *)

%Y Cf. A128297.

%K frac,nonn

%O 1,4

%A _Leroy Quet_, Feb 25 2007

%E More terms from _Stefan Steinerberger_, Oct 24 2007