

A128204


a(0) = 0; a(n) = a(n1)  (2n1) if that number is positive and not already in the sequence, otherwise a(n) = a(n1) + (2n1).


2



0, 1, 4, 9, 2, 11, 22, 35, 20, 3, 22, 43, 66, 41, 14, 43, 12, 45, 10, 47, 8, 49, 6, 51, 98, 147, 96, 149, 94, 37, 96, 157, 220, 155, 88, 19, 90, 17, 92, 15, 94, 13, 96, 181, 268, 179, 270, 177, 82, 179, 80, 181, 78, 183, 76, 185, 74, 187, 72, 189, 70, 191, 68, 193, 320
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

'Recamán transform' (see A005132) of the odd numbers.


LINKS

Table of n, a(n) for n=0..64.
Nick Hobson, Python program for this sequence
Index entries for sequences related to Recamán's sequence


EXAMPLE

Consider n=7. We have a(6)=22 and try to subtract 13, the 7th odd number. The result, 9, is certainly positive, but we cannot use it because 9 is already in the sequence. So we must add 13 instead, getting a(7) = 22 + 13 = 35.


PROG

(PARI) A128204(N, s/*=1 to print all terms*/)={my(a=0, u=0); for( n=1, N, s&print1(a", "); u=bitor(u, 2^a+=if(a<2*n  bittest(u, a+12*n), 2*n1, 12*n))); a} \\ M. F. Hasler, Mar 07 2012


CROSSREFS

Cf. A005132, A053461, A064365, A123483.
Sequence in context: A203816 A070437 A238324 * A079049 A114578 A135044
Adjacent sequences: A128201 A128202 A128203 * A128205 A128206 A128207


KEYWORD

easy,nonn


AUTHOR

Nick Hobson (nickh(AT)qbyte.org), Feb 19 2007


STATUS

approved



