login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128196 A weighted sum of quotients of double factorials. 4
1, 3, 13, 73, 527, 4775, 52589, 683785, 10257031, 174370039, 3313031765, 69573669113, 1600194393695, 40004859850567, 1080131215981693 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the sum of rows in the following triangle (A126063):

T(n,k) (n,k>=0)

...........1.

...........1,.......2

...........3,.......6,.......4.

..........15,......30,......20,.......8

.........105,.....210,.....140,......56,.....16

.........945,....1890,....1260,.....504,....144,....32

.......10395,...20790,...13860,....5544,...1584,...352,....64

......135135,..270270,..180180,...72072,..20592,..4576,...832,..128

First column is A001147, second column is A097801.

The diagonal is A000079, the subdiagonal is A014480.

Let H be the diagonal matrix diag(1,2,4,8,...) and

let G be the matrix (n!! defined as A001147(n), -1!! = 1):

(-1)!!/(-1)!!

1!!/(-1)!! 1!!/1!!

3!!/(-1)!! 3!!/1!! 3!!/3!!

5!!/(-1)!! 5!!/1!! 5!!/3!! 5!!/5!!

...

Then T = G*H. [Gottfried Helms]

LINKS

Table of n, a(n) for n=0..14.

P. Luschny, Variants of Variations.

FORMULA

a(n) = (2n)!/(n! 2^n) Sum(k=0..n, 4^k k!/(2k)!)

a(n) = 2^n Gamma(n+1/2) Sum(k=0..n, 1/Gamma(k+1/2))

a(n) = Sum(k=0..n, 2^k n!!/k!!) [n!! defined as A001147(n), Gottfried Helms]

a(n) = Sum(k=0..n, 2^(2k-n)((n+1)! Catalan(n))/((k+1)! Catalan(k))) [Catalan(n) A000108]

a(n) = Sum(k=0..n, 2^(2k-n) QuadFact(n)/QuadFact(k)) [QuadFact(n) A001813]

a(n) = Sum(k=0..n, 2^(2k-n) (-1)^(n-k) A097388(n)/A097388(k) )

a(n) = A001147(n) Sum(k=0..n, 2^k / A001147(k))

a(n) = A128195(n)/A005408(n)

a(n) = A128195(n-1)+A000079(n) (if n>0)

Recursive form: a(n) = (2n-1)*a(n-1) + 2^n; a(0) = 1 [Gottfried Helms]

Note: The following constants will be used in the next formulas.

K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)

M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))

Generalized form: For x>0

a(x) = 2^x(exp(1)*Gamma(x+1/2,1) + K*Gamma(x+1/2))

Asymptotic formula:

a(n) ~ 2^n*(1+(exp(1)+K)*(n-1/2)!)

a(n) ~ M(2exp(-1)(n-1/(24*n+19/10*1/n)))^n

MAPLE

a := n -> `if`(n=0, 1, (2*n-1)*a(n-1)+2^n);

MATHEMATICA

a[n_] := Sum[2^k*((2*n-1)!!/(2*k-1)!!), {k, 0, n}]; Table[a[n], {n, 0, 14}] (* Jean-Fran├žois Alcover, Jun 28 2013 *)

CROSSREFS

Cf. A128195, A001147, A126063.

Sequence in context: A059294 A124468 A205572 * A162161 A119013 A190878

Adjacent sequences:  A128193 A128194 A128195 * A128197 A128198 A128199

KEYWORD

easy,nonn

AUTHOR

Peter Luschny, Feb 26 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 21:51 EST 2016. Contains 278755 sequences.