login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128176 A128174 * A007318. 3

%I #37 Apr 19 2020 08:35:49

%S 1,1,1,2,2,1,2,4,3,1,3,6,7,4,1,3,9,13,11,5,1,4,12,22,24,16,6,1,4,16,

%T 34,46,40,22,7,1,5,20,50,80,86,62,29,8,1,5,25,70,130,166,148,91,37,9,

%U 1,6,30,95,200,296,314,239,128,46,10,1

%N A128174 * A007318.

%C Row Sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...).

%C A007318 * A128174 = A128175.

%C From _Peter Bala_, Aug 14 2014: (Start)

%C Riordan array ( 1/((1 - x^2)*(1 - x)), x/(1 - x) ).

%C Let B_n be the set of length n nonzero binary words ending in an even number (possibly 0) of 0's. Then T(n,k) is the number of words in B_n having k 1's. An example is given below. (End)

%H G. C. Greubel, <a href="/A128176/b128176.txt">Table of n, a(n) for the first 100 rows, flattened</a>

%H Georg Cantor, <a href="http://resolver.sub.uni-goettingen.de/purl?PPN237853094">Gesammelte Abhandlungen mathematischen und philosophischen Inhalts</a>, Part IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, Springer, Berlin, 1932. See p. 434.

%F A128174 * A007318 (Pascal's triangle), as infinite lower triangular matrices.

%F From _Peter Bala_, Aug 14 2014: (Start)

%F Working with a row and column offset of 0 we have T(n,k) = Sum_{i = 0..floor(n/2)} binomial(n - 2*i,k).

%F O.g.f.: 1/( (1 - z^2)*(1 - z*(1 + x)) ) = Sum_{n >= 0} R(n,x)*z^n = 1 + (1 + x)*z + (2 + 2*x + x^2)*z^2 + ....

%F The row polynomials satisfy R(n+2,x) - R(n,x) = (1 + x)^(n+1). (End)

%F From _Hartmut F. W. Hoft_, Mar 15 2017: (Start)

%F Using offset 0, the triangle has the Pascal Triangle recursion pattern:

%F T(n, 0) = 1 + floor(n/2) and T(n, n) = 1, for n >= 0;

%F T(n, k) = T(n-1, k-1) + T(n-1, k) for n > 0 and 0 < k < n. (End)

%e First few rows of the triangle are:

%e 1;

%e 1, 1;

%e 2, 2, 1;

%e 2, 4, 3, 1;

%e 3, 6, 7, 4, 1;

%e 3, 9, 13, 11, 5, 1;

%e 4, 12, 22, 24, 16, 6, 1;

%e 4, 16, 34, 46, 40, 22, 7, 1;

%e ...

%e From _Peter Bala_, Aug 14 2014: (Start)

%e Row 4: [2,4,3,1].

%e k Binary words in B_4 with k 1's Number

%e - - - - - - - - - - - - - - - - - - - - - - - - - -

%e 1 0001, 0100 2

%e 2 0011, 0101, 1001, 1100 4

%e 3 0111, 1011, 1101 3

%e 4 1111 1

%e - - - - - - - - - - - - - - - - - - - - - - - - - -

%e The infinitesimal generator matrix begins

%e 0

%e 1 0

%e 1 2 0

%e -1 1 3 0

%e 1 -1 1 4 0

%e -1 1 -1 1 5 0

%e ...

%e Cf. A132440. (End)

%t (* Dot product of two lower triangular matrices *)

%t dotRow[r_, s_, n_] := Map[Sum[r[n, k] s[k, #], {k, #, n}]&, Range[0, n]]

%t dotTriangle[r_, s_, n_] := Map[dotRow[r, s, #]&, Range[0, n]]

%t (* The pure function in the first argument computes A128174 *)

%t a128176[r_] := dotTriangle[If[EvenQ[#1 + #2], 1, 0]&, Binomial, r]

%t TableForm[a128176[7]] (* triangle *)

%t Flatten[a128176[9]] (* data *) (* _Hartmut F. W. Hoft_, Mar 15 2017 *)

%t T[n_, n_] := 1; T[n_, 0] := 1 + Floor[n/2]; T[n_, k_] := T[n, k] = T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n,0,20}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Sep 30 2017 *)

%o (PARI) for(n=0, 10, for(k=0,n, print1(sum(i=0,floor(n/2), binomial(n - 2*i,k)), ", "))) \\ _G. C. Greubel_, Sep 30 2017

%Y Cf. A000975, A128175, A007318.

%Y Cf. A035317 (mirror). [_Johannes W. Meijer_, Jul 20 2011]

%K nonn,tabl

%O 1,4

%A _Gary W. Adamson_, Feb 17 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 15:42 EDT 2024. Contains 371960 sequences. (Running on oeis4.)