login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1. 67

%I

%S 1,1,1,1,2,2,2,1,1,3,5,7,8,8,7,5,3,1,1,4,9,16,24,32,39,44,46,44,39,32,

%T 24,16,9,4,1,1,5,14,30,54,86,125,169,215,259,297,325,340,340,325,297,

%U 259,215,169,125,86,54,30,14,5,1,1,6,20,50,104,190,315,484,699,958,1255,1580,1919,2254,2565,2832,3037,3166,3210,3166,3037,2832,2565,2254,1919,1580,1255,958,699,484,315,190,104,50,20,6,1,1,7,27,77,181,371,686,1170,1869,2827,4082,5662,7581,9835,12399,15225,18242,21358,24464,27440,30162,32510,34376,35672,36336

%N Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

%C See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials.

%H Paul D. Hanna, <a href="/A128084/b128084.txt">Rows n=0..30 of triangle, in flattened form.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a> from MathWorld.

%H A. V. Yurkin, <a href="http://www.mce.biophys.msu.ru/eng/archive/abstracts/mce19/sect1138/doc150220/">On similarity of systems of geometrical and arithmetic triangles</a>, in Mathematics, Computing, Education Conference XIX, 2012.

%H A. V. Yurkin, <a href="http://arxiv.org/abs/1302.6287">New view on the diffraction discovered by Grimaldi and Gaussian beams</a>, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.

%H A. V. Yurkin, <a href="https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-38404-2/new-binomial-and-new-view-on-light-theory">New binomial and new view on light theory</a>, LAP Lambert Academic Publishing, 2013, 78 pages.

%e The row sums form A000165, the even double factorial numbers:

%e [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 2, 2, 2, 1;

%e 1, 3, 5, 7, 8, 8, 7, 5, 3, 1;

%e 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1;

%e 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1;

%e 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919, 2254, 2565, 2832, 3037, 3166, 3210, 3166, 3037, 2832, 2565, 2254, 1919, 1580, 1255, 958, 699, 484, 315, 190, 104, 50, 20, 6, 1;

%e 1, 7, 27, 77, 181, 371, 686, 1170, 1869, 2827, 4082, 5662, 7581, 9835, 12399, 15225, 18242, 21358, 24464, 27440, 30162, 32510, 34376, 35672, 36336, 36336, ...; ...

%t t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* _Jean-Fran├žois Alcover_, Mar 06 2013, translated from Pari *)

%o (PARI) {T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}

%o for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))

%Y Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths).

%Y The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084.

%K nonn,tabf

%O 0,5

%A _Paul D. Hanna_, Feb 14 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 14:17 EDT 2019. Contains 321431 sequences. (Running on oeis4.)