login
Triangle, A097805 * A127648.
1

%I #19 Oct 15 2020 04:43:15

%S 1,0,2,0,2,3,0,2,6,4,0,2,9,12,5,0,2,12,24,20,6,0,2,15,40,50,30,7,0,2,

%T 18,60,100,90,42,8,0,2,21,84,175,210,147,56,9,0,2,24,112,280,420,392,

%U 224,72,10

%N Triangle, A097805 * A127648.

%C Row sums = A045623 starting (1, 2, 5, 12, 28, 64, ...).

%C Dropping the first column gives A128710. - _Peter Bala_, Mar 05 2013

%C T(n,k) is the number of ways to place n unlabeled balls into 2 boxes, make compositions of the integer number of balls in each box so that the total number of parts in both compositions is k. - _Geoffrey Critzer_, Sep 21 2013

%F A097805 * A127648 as infinite lower triangular matrices.

%F E.g.f.: 1/(1 - y*(x/(1-x)))^2. - _Geoffrey Critzer_, Sep 21 2013

%F O.g.f.: (1+A001263(x,y))^2, - _Vladimir Kruchinin_, Oct 15 2020

%e First few rows of the triangle are:

%e 1;

%e 0, 2;

%e 0, 2, 3;

%e 0, 2, 6, 4;

%e 0, 2, 9, 12, 5;

%e 0, 2, 12, 24, 20, 6;

%e 0, 2, 15, 40, 50, 30, 7;

%e ...

%e T(4,3)=12. Place 4 unlabeled balls into 2 labeled boxes then make compositions of the integer number of balls in each box so that there are a total of 3 parts.

%e /**** 3 ways since there are 3 compositions of 4 into 3 parts.

%e */*** 2 ways 1;1+2 and 1;2+1

%e **/** 2 ways 2;1+1 and 1+1;2.

%e ***/* 2 ways as above.

%e ****/ 3 ways as above.

%e 3+2+2+2+3=12. - _Geoffrey Critzer_, Sep 21 2013

%t nn=10;a=x/(1-x);CoefficientList[Series[1/(1-y a)^2,{x,0,nn}],{x,y}]//Grid (* _Geoffrey Critzer_, Sep 21 2013 *)

%Y Cf. A001263, A097805, A127648, A128710.

%K nonn,tabl

%O 1,3

%A _Gary W. Adamson_, Feb 09 2007