login
a(8n)=8n+1, a(8n+1)=a(8n+2)=a(8n+3)=8n+5, a(8n+4)=8n+6, a(8n+5)=a(8n+6)=a(8n+7)=8n+8.
2

%I #25 Jan 01 2024 11:53:42

%S 1,5,5,5,6,8,8,8,9,13,13,13,14,16,16,16,17,21,21,21,22,24,24,24,25,29,

%T 29,29,30,32,32,32,33,37,37,37,38,40,40,40,41,45,45,45,46,48,48,48,49,

%U 53,53,53,54,56,56,56,57,61,61,61,62,64,64,64,65,69,69,69,70,72,72,72

%N a(8n)=8n+1, a(8n+1)=a(8n+2)=a(8n+3)=8n+5, a(8n+4)=8n+6, a(8n+5)=a(8n+6)=a(8n+7)=8n+8.

%H G. C. Greubel, <a href="/A127934/b127934.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).

%F G.f.: (1 +4*x +x^4 +2*x^5)/(1 -x -x^8 +x^9). - _G. C. Greubel_, Apr 30 2018

%t LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,5,5,5,6,8,8,8,9},80] (* _Harvey P. Dale_, Oct 04 2014 *)

%t CoefficientList[Series[(1+4*x+x^4+2*x^5)/(1-x-x^8+x^9), {x,0,50}], x] (* _G. C. Greubel_, Apr 30 2018 *)

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +4*x +x^4 +2*x^5)/(1-x-x^8+x^9))); // _G. C. Greubel_, Apr 30 2018

%o (PARI) x='x + O('x^50); Vec((1 +4*x +x^4 +2*x^5)/(1-x-x^8+x^9)) \\ _G. C. Greubel_, Apr 30 2018

%K nonn

%O 0,2

%A _Philippe Deléham_, Apr 06 2007