OFFSET
1,2
COMMENTS
Sequence is infinite: starting with the 13th term, a(13)=157, a(i)=a(i-12)+156. In general, for p and p-2 both prime, starting with p-th term, a(i-(p-1))+p(p-1). This particular sequence corresponds to the case p=13.
First differences have period 12. - Charles R Greathouse IV, Oct 11 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
FORMULA
a(n) = a(n-1) + a(n-12) - a(n-13). - Wesley Ivan Hurt, Feb 22 2022
MATHEMATICA
Select[Range[700], Divisible[11#+2^#, 13]&] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 2, 6, 9, 23, 29, 70, 72, 103, 112, 128, 147, 157}, 60] (* Harvey P. Dale, Sep 03 2016 *)
PROG
(PARI) isok(n) = ((11*n + 2^n) % 13) == 0; \\ Michel Marcus, Oct 11 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Feb 07 2007, Feb 09 2007
STATUS
approved