OFFSET
2,1
COMMENTS
Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - César Aguilera, Feb 20 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..10000
FORMULA
a(n) ~ (n log n)^3/12. - Charles R Greathouse IV, Feb 28 2018
MAPLE
a:= n-> (p->p*(p^2-1)/12)(ithprime(n)):
seq(a(n), n=2..40); # Alois P. Heinz, Mar 08 2022
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}]
((#-1)#(#+1))/12&/@Prime[Range[2, 40]] (* Harvey P. Dale, Mar 08 2022 *)
PROG
(PARI) a(n, p=prime(n))=binomial(p+1, 3)/2 \\ Charles R Greathouse IV, Feb 28 2018
(Magma) [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // G. C. Greubel, Apr 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved