The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127883 a(n) = 60*(n^5/120 + n^4/24 + n^3/6 + n^2/2 + n + 1). 7
 163, 436, 1104, 2572, 5485, 10788, 19786, 34204, 56247, 88660, 134788, 198636, 284929, 399172, 547710, 737788, 977611, 1276404, 1644472, 2093260, 2635413, 3284836, 4056754, 4967772, 6035935, 7280788, 8723436, 10386604, 12294697 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Generating polynomial is Schur's polynomial of 5-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930). LINKS Bruno Berselli, Table of n, a(n) for n = 1..1000 FORMULA G.f.: x*(163-542*x+933*x^2-772*x^3+338*x^4-60*x^5)/(1-x)^6. - Colin Barker, Apr 02 2012 MAPLE A127883:=n->60*(n^5/120 + n^4/24 + n^3/6 + n^2/2 + n + 1); seq(A127883(n), n=1..40); # Wesley Ivan Hurt, Mar 27 2014 MATHEMATICA Table[1/2 (120+x (120+x (60+x (20+x (5+x))))), {x, 40}] (* Harvey P. Dale, Mar 12 2011 *) CoefficientList[Series[(163 - 542 x + 933 x^2 - 772 x^3 + 338 x^4 - 60 x^5)/(1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *) PROG (MAGMA) [n^4*(n+5)/2+10*(n^3+3*n^2+6*n+6): n in [1..30]]; // Bruno Berselli, Apr 03 2012 CROSSREFS Cf. A127873-A127882. Sequence in context: A142237 A142283 A038552 * A054466 A221903 A002149 Adjacent sequences:  A127880 A127881 A127882 * A127884 A127885 A127886 KEYWORD nonn,easy AUTHOR Artur Jasinski, Feb 04 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)