login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127882 Primes of the form 60*(x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1). 6
163, 977611, 12294697, 37985853397, 49252877161, 137434331779, 830329719061, 1626105882361, 8060524420261, 11467771684597, 13008402510163, 15315610041211, 43633838254429, 71635442712061, 125119099806661 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Generating polynomial is Schur's polynomial of 5-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

MAPLE

select(isprime, [seq(60*(x^5/120+x^4/24+x^3/6+x^2/2+x+1), x=1..2000)]); # Muniru A Asiru, Apr 30 2018

MATHEMATICA

a = {}; Do[If[PrimeQ[60 + 60*x + 30*x^2 + 10*x^3 + (5*x^4)/2 + x^5/2], AppendTo[a, 60 + 60*x + 30*x^2 + 10*x^3 + (5*x^4)/2 + x^5/2]], {x, 1, 1000}]; a

PROG

(GAP) Filtered(List([1..2000], x->60*(x^5/120+x^4/24+x^3/6+x^2/2+x+1)), IsPrime); # Muniru A Asiru, Apr 30 2018

CROSSREFS

Cf. A127873, A127874, A127875, A127876, A127877, A127878, A127879, A127880, A127881, A127883.

Sequence in context: A247273 A247275 A247276 * A240255 A045006 A245386

Adjacent sequences:  A127879 A127880 A127881 * A127883 A127884 A127885

KEYWORD

nonn

AUTHOR

Artur Jasinski, Feb 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 00:54 EDT 2020. Contains 337440 sequences. (Running on oeis4.)