OFFSET
1,1
COMMENTS
Generating polynomial is Schur's polynomial of 5-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
MAPLE
select(isprime, [seq(60*(x^5/120+x^4/24+x^3/6+x^2/2+x+1), x=1..2000)]); # Muniru A Asiru, Apr 30 2018
MATHEMATICA
a = {}; Do[If[PrimeQ[60 + 60*x + 30*x^2 + 10*x^3 + (5*x^4)/2 + x^5/2], AppendTo[a, 60 + 60*x + 30*x^2 + 10*x^3 + (5*x^4)/2 + x^5/2]], {x, 1, 1000}]; a
PROG
(GAP) Filtered(List([1..2000], x->60*(x^5/120+x^4/24+x^3/6+x^2/2+x+1)), IsPrime); # Muniru A Asiru, Apr 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 04 2007
STATUS
approved