login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127880 Numbers x for which x^4 + 4x^3 + 12x^2 + 24x + 24 is prime. 5
43, 55, 103, 115, 223, 307, 319, 379, 403, 487, 505, 607, 643, 715, 757, 763, 775, 799, 883, 925, 979, 1063, 1069, 1135, 1147, 1165, 1189, 1279, 1309, 1369, 1543, 1567, 1585, 1627, 1693, 1729, 1783, 1813, 1819, 1855, 1903, 1939, 1945, 2083, 2149, 2155 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

MAPLE

select(x->isprime(x^4+4*x^3+12*x^2+24*x+24), [$1..3000]); # Muniru A Asiru, Apr 30 2018

MATHEMATICA

a = {}; Do[If[PrimeQ[24 + 24 x + 12 x^2 + 4 x^3 + x^4], AppendTo[a, x]], {x, 1, 1000}]; a

PROG

(PARI) isok(x) = isprime(x^4 + 4*x^3 + 12*x^2 + 24*x + 24); \\ Michel Marcus, Apr 30 2018

(GAP) Filtered([1..3000], x->IsPrime(x^4+4*x^3+12*x^2+24*x+24)); # Muniru A Asiru, Apr 30 2018

CROSSREFS

Cf. A127873, A127874, A127875, A127876, A127877, A127878, A127879, A127881, A127882, A127883.

Sequence in context: A280388 A180546 A166491 * A078132 A201613 A115404

Adjacent sequences:  A127877 A127878 A127879 * A127881 A127882 A127883

KEYWORD

nonn

AUTHOR

Artur Jasinski, Feb 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 21:27 EDT 2020. Contains 337440 sequences. (Running on oeis4.)