OFFSET
1,1
COMMENTS
Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
MAPLE
select(isprime, [seq(x^4+4*x^3+12*x^2+24*x+24, x=1..2000)]); # Muniru A Asiru, Apr 30 2018
MATHEMATICA
a = {}; Do[If[PrimeQ[24 + 24 x + 12 x^2 + 4 x^3 + x^4], AppendTo[a, 24 + 24 x + 12 x^2 + 4 x^3 + x^4]], {x, 1, 1000}]; a
Select[Table[x^4+4x^3+12x^2+24x+24, {x, 780}], PrimeQ[#]&] (* Harvey P. Dale, Jan 24 2013 *)
PROG
(GAP) Filtered(List([1..2000], x->x^4+4*x^3+12*x^2+24*x+24), IsPrime); # Muniru A Asiru, Apr 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 04 2007
STATUS
approved