login
A127879
Primes of the form x^4 + 4*x^3 + 12*x^2 + 24*x + 24.
5
3760073, 9853769, 117051593, 181145609, 2517933833, 8999750153, 10486376969, 20852229449, 26640445193, 56713997513, 65555973569, 136653695753, 172008443273, 262819256009, 330127243553, 340704528713, 362619554249
OFFSET
1,1
COMMENTS
Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).
LINKS
MAPLE
select(isprime, [seq(x^4+4*x^3+12*x^2+24*x+24, x=1..2000)]); # Muniru A Asiru, Apr 30 2018
MATHEMATICA
a = {}; Do[If[PrimeQ[24 + 24 x + 12 x^2 + 4 x^3 + x^4], AppendTo[a, 24 + 24 x + 12 x^2 + 4 x^3 + x^4]], {x, 1, 1000}]; a
Select[Table[x^4+4x^3+12x^2+24x+24, {x, 780}], PrimeQ[#]&] (* Harvey P. Dale, Jan 24 2013 *)
PROG
(GAP) Filtered(List([1..2000], x->x^4+4*x^3+12*x^2+24*x+24), IsPrime); # Muniru A Asiru, Apr 30 2018
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 04 2007
STATUS
approved