login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127879 Primes of the form x^4 + 4*x^3 + 12*x^2 + 24*x + 24. 5
3760073, 9853769, 117051593, 181145609, 2517933833, 8999750153, 10486376969, 20852229449, 26640445193, 56713997513, 65555973569, 136653695753, 172008443273, 262819256009, 330127243553, 340704528713, 362619554249 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

MAPLE

select(isprime, [seq(x^4+4*x^3+12*x^2+24*x+24, x=1..2000)]); # Muniru A Asiru, Apr 30 2018

MATHEMATICA

a = {}; Do[If[PrimeQ[24 + 24 x + 12 x^2 + 4 x^3 + x^4], AppendTo[a, 24 + 24 x + 12 x^2 + 4 x^3 + x^4]], {x, 1, 1000}]; a

Select[Table[x^4+4x^3+12x^2+24x+24, {x, 780}], PrimeQ[#]&] (* Harvey P. Dale, Jan 24 2013 *)

PROG

(GAP) Filtered(List([1..2000], x->x^4+4*x^3+12*x^2+24*x+24), IsPrime); # Muniru A Asiru, Apr 30 2018

CROSSREFS

Cf. A127873, A127874, A127875, A127876, A127877, A127878, A127880, A127881, A127882, A127883.

Sequence in context: A184647 A233753 A333744 * A206760 A186615 A175890

Adjacent sequences:  A127876 A127877 A127878 * A127880 A127881 A127882

KEYWORD

nonn

AUTHOR

Artur Jasinski, Feb 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 21:21 EDT 2021. Contains 342856 sequences. (Running on oeis4.)