OFFSET
0,1
COMMENTS
Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
Integral representation in terms of incomplete Gamma function : a(n)= Exp[n]Gamma[5,n], where Gamma[5,n]= Integrate[x^4 Exp[ -x], {x, n, +infinity}]. - N-E. Fahssi, Jan 25 2008
G.f.: (24 -55*x +83*x^2 -37*x^3 +9*x^4)/(1-x)^5. - Colin Barker, Apr 02 2012
E.g.f.: (24 + 41*x + 31*x^2 + 10*x^3 + x^4)*exp(x). - G. C. Greubel, Apr 29 2018
MAPLE
seq(n^4+4*n^3+12*n^2+24*n+24, n=0..40); # Muniru A Asiru, Apr 30 2018
MATHEMATICA
Table[24 + 24*n + 12*n^2 + 4*n^3 + n^4, {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {24, 65, 168, 393, 824}, 50] (* G. C. Greubel, Apr 29 2018 *)
PROG
(PARI) for(n=0, 30, print1(n^4 +4*n^3 +12*n^2 +24*n +24, ", ")) \\ G. C. Greubel, Apr 29 2018
(Magma) [n^4 +4*n^3 +12*n^2 +24*n +24: n in [0..30]]; // G. C. Greubel, Apr 29 2018
(GAP) List([0..40], n->n^4+4*n^3+12*n^2+24*n+24); # Muniru A Asiru, Apr 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 04 2007
STATUS
approved