login
A127877
Integers of the form (x^4)/24 + (x^3)/6 + (x^2)/2 + x + 1 with x > 0.
5
7, 115, 297, 1237, 2171, 5527, 8221, 16441, 22335, 38731, 49697, 78445, 96787, 142927, 171381, 240817, 282551, 382051, 440665, 577861, 657387, 840775, 945677, 1184617, 1319791, 1624507, 1795281, 2176861, 2388995, 2859391, 3119077, 3691105, 4004967, 4692307
OFFSET
1,1
COMMENTS
Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).
FORMULA
From Colin Barker, May 15 2016: (Start)
a(n) = (11 +5*(-1)^n +16*(2+(-1)^n)*n +18*(3+(-1)^n)*n^2 +36*(1+(-1)^n)*n^3 +54*n^4)/16.
a(n) = (27*n^4+36*n^3+36*n^2+24*n+8)/8 for n even.
a(n) = (27*n^4+18*n^2+8*n+3)/8 for n odd.
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9) for n>9.
G.f.: x*(7+108*x+154*x^2+508*x^3+248*x^4+244*x^5+22*x^6+4*x^7+x^8) / ((1-x)^5*(1+x)^4).
(End)
MATHEMATICA
a = {}; Do[If[IntegerQ[1 + x + x^2/2 + x^3/6 + x^4/24], AppendTo[a, 1 + x + x^2/2 + x^3/6 + x^4/24]], {x, 1, 100}]; a
Select[Table[(x^4)/24+(x^3)/6+(x^2)/2+x+1, {x, 100}], IntegerQ] (* Harvey P. Dale, Aug 14 2012 *)
PROG
(PARI) Vec(x*(7+108*x+154*x^2+508*x^3+248*x^4+244*x^5+22*x^6+4*x^7+x^8)/((1-x)^5*(1+x)^4) + O(x^50)) \\ Colin Barker, May 15 2016
(Magma) [(11 +5*(-1)^n +16*(2+(-1)^n)*n +18*(3+(-1)^n)*n^2 +36*(1+(-1)^n)*n^3 +54*n^4)/16: n in [1..30]]; // G. C. Greubel, Apr 29 2018
(GAP) Filtered(List([0..150], x->(x^4)/24+(x^3)/6+(x^2)/2+x+1), IsInt); # Muniru A Asiru, Apr 30 2018
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 04 2007
STATUS
approved