login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127877 Integers of the form (x^4)/24 + (x^3)/6 + (x^2)/2 + x + 1 with x > 0. 5
7, 115, 297, 1237, 2171, 5527, 8221, 16441, 22335, 38731, 49697, 78445, 96787, 142927, 171381, 240817, 282551, 382051, 440665, 577861, 657387, 840775, 945677, 1184617, 1319791, 1624507, 1795281, 2176861, 2388995, 2859391, 3119077, 3691105, 4004967, 4692307 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).

FORMULA

From Colin Barker, May 15 2016: (Start)

a(n) = (11 +5*(-1)^n +16*(2+(-1)^n)*n +18*(3+(-1)^n)*n^2 +36*(1+(-1)^n)*n^3 +54*n^4)/16.

a(n) = (27*n^4+36*n^3+36*n^2+24*n+8)/8 for n even.

a(n) = (27*n^4+18*n^2+8*n+3)/8 for n odd.

a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9) for n>9.

G.f.: x*(7+108*x+154*x^2+508*x^3+248*x^4+244*x^5+22*x^6+4*x^7+x^8) / ((1-x)^5*(1+x)^4).

(End)

MATHEMATICA

a = {}; Do[If[IntegerQ[1 + x + x^2/2 + x^3/6 + x^4/24], AppendTo[a, 1 + x + x^2/2 + x^3/6 + x^4/24]], {x, 1, 100}]; a

Select[Table[(x^4)/24+(x^3)/6+(x^2)/2+x+1, {x, 100}], IntegerQ] (* Harvey P. Dale, Aug 14 2012 *)

PROG

(PARI) Vec(x*(7+108*x+154*x^2+508*x^3+248*x^4+244*x^5+22*x^6+4*x^7+x^8)/((1-x)^5*(1+x)^4) + O(x^50)) \\ Colin Barker, May 15 2016

(MAGMA) [(11 +5*(-1)^n +16*(2+(-1)^n)*n +18*(3+(-1)^n)*n^2 +36*(1+(-1)^n)*n^3 +54*n^4)/16: n in [1..30]]; // G. C. Greubel, Apr 29 2018

(GAP) Filtered(List([0..150], x->(x^4)/24+(x^3)/6+(x^2)/2+x+1), IsInt); # Muniru A Asiru, Apr 30 2018

CROSSREFS

Cf. A127873, A127874, A127875, A127876, A127878, A127879, A127880, A127881, A127882, A127883.

Sequence in context: A240288 A220343 A183403 * A082487 A081798 A063399

Adjacent sequences:  A127874 A127875 A127876 * A127878 A127879 A127880

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Feb 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)