The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127877 Integers of the form (x^4)/24 + (x^3)/6 + (x^2)/2 + x + 1 with x > 0. 5
 7, 115, 297, 1237, 2171, 5527, 8221, 16441, 22335, 38731, 49697, 78445, 96787, 142927, 171381, 240817, 282551, 382051, 440665, 577861, 657387, 840775, 945677, 1184617, 1319791, 1624507, 1795281, 2176861, 2388995, 2859391, 3119077, 3691105, 4004967, 4692307 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Generating polynomial is Schur's polynomial of 4-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1). FORMULA From Colin Barker, May 15 2016: (Start) a(n) = (11 +5*(-1)^n +16*(2+(-1)^n)*n +18*(3+(-1)^n)*n^2 +36*(1+(-1)^n)*n^3 +54*n^4)/16. a(n) = (27*n^4+36*n^3+36*n^2+24*n+8)/8 for n even. a(n) = (27*n^4+18*n^2+8*n+3)/8 for n odd. a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9) for n>9. G.f.: x*(7+108*x+154*x^2+508*x^3+248*x^4+244*x^5+22*x^6+4*x^7+x^8) / ((1-x)^5*(1+x)^4). (End) MATHEMATICA a = {}; Do[If[IntegerQ[1 + x + x^2/2 + x^3/6 + x^4/24], AppendTo[a, 1 + x + x^2/2 + x^3/6 + x^4/24]], {x, 1, 100}]; a Select[Table[(x^4)/24+(x^3)/6+(x^2)/2+x+1, {x, 100}], IntegerQ] (* Harvey P. Dale, Aug 14 2012 *) PROG (PARI) Vec(x*(7+108*x+154*x^2+508*x^3+248*x^4+244*x^5+22*x^6+4*x^7+x^8)/((1-x)^5*(1+x)^4) + O(x^50)) \\ Colin Barker, May 15 2016 (MAGMA) [(11 +5*(-1)^n +16*(2+(-1)^n)*n +18*(3+(-1)^n)*n^2 +36*(1+(-1)^n)*n^3 +54*n^4)/16: n in [1..30]]; // G. C. Greubel, Apr 29 2018 (GAP) Filtered(List([0..150], x->(x^4)/24+(x^3)/6+(x^2)/2+x+1), IsInt); # Muniru A Asiru, Apr 30 2018 CROSSREFS Cf. A127873, A127874, A127875, A127876, A127878, A127879, A127880, A127881, A127882, A127883. Sequence in context: A240288 A220343 A183403 * A082487 A081798 A063399 Adjacent sequences:  A127874 A127875 A127876 * A127878 A127879 A127880 KEYWORD nonn,easy AUTHOR Artur Jasinski, Feb 04 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)