

A127839


a(1)=1,a(2)=...=a(5)=0,a(n)=a(n5)+a(n4) for n>5.


1



1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 4, 6, 4, 2, 5, 10, 10, 6, 7, 15, 20, 16, 13, 22, 35, 36, 29, 35, 57, 71, 65, 64, 92, 128, 136, 129, 156, 220, 264, 265, 285, 376, 484, 529, 550, 661, 860, 1013, 1079, 1211
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,15


COMMENTS

Part of the phi_k family of sequences defined by a(1)=1,a(2)=...=a(k)=0, a(n)=a(nk)+a(nk+1) for n>k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.


REFERENCES

S. Suter, Binetlike formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1)


FORMULA

Binetlike formula: a(n)=sum_{i=1...5} (r_i^n)/(4(r_i)^2+5(r_i)) where r_i is a root of x^5=x+1
G.f.: x*(x^41)/(x^5+x^41) [From Harvey P. Dale, Mar 19 2012]
a(n) = A017827(n6) for n>=6.  R. J. Mathar, May 09 2013


MAPLE

P:=proc(n) local a, a0, a1, a2, a3, a4, a5, i; a0:=1; a1:=0; a2:=0; a3:=0; a4:=0; print(a0); print(a1); print(a2); print(a3); print(a4); for i from 1 by 1 to n do a:=a0+a1; a0:=a1; a1:=a2; a2:=a3; a3:=a4; a4:=a; print(a); od; end: P(100);  Paolo P. Lava, Jun 28 2007


MATHEMATICA

LinearRecurrence[{0, 0, 0, 1, 1}, {1, 0, 0, 0, 0}, 70] (* Harvey P. Dale, Mar 19 2012 *)


CROSSREFS

Sequence in context: A277666 A274581 A247919 * A017827 A094266 A071569
Adjacent sequences: A127836 A127837 A127838 * A127840 A127841 A127842


KEYWORD

nonn,easy


AUTHOR

Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007


STATUS

approved



