login
A127813
G.f.: (x^2+6*x^3+7*x^4+8*x^5+4*x^6-3*x^8-2*x^9-x^10) / ((1-x)^2*(1-x^2)^3*(1-x^3)^4*(1-x^4)).
1
0, 0, 1, 8, 25, 72, 175, 384, 778, 1492, 2701, 4704, 7891, 12828, 20280, 31312, 47265, 70000, 101836, 145792, 205663, 286284, 393520, 534816, 719117, 957408, 1262909, 1651640, 2142476, 2758212, 3525503, 4475904, 5646291, 7079924, 8826657, 10944800
OFFSET
0,4
REFERENCES
B. Broer, Hilbert series for modules of covariants, in Algebraic Groups and Their Generalizations..., Proc. Sympos. Pure Math., 56 (1994), Part I, 321-331.
LINKS
MATHEMATICA
CoefficientList[Series[(x^2+6x^3+7x^4+8x^5+4x^6-3x^8-2x^9-x^10)/((1-x)^2(1-x^2)^3(1-x^3)^4(1-x^4)), {x, 0, 40}], x] (* Harvey P. Dale, May 19 2019 *)
CROSSREFS
Sequence in context: A169831 A212095 A287120 * A295911 A231791 A035073
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 07 2007
STATUS
approved