login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127790 G.f.: (2*x+4*x^2+4*x^3+4*x^4+2*x^5)/((1-x)^2*(1-x^2)^3*(1-x^3)^4*(1-x^4)). 2
0, 2, 8, 24, 64, 148, 312, 620, 1160, 2070, 3560, 5912, 9528, 14974, 22984, 34548, 50984, 73958, 105624, 148744, 206728, 283854, 385448, 517964, 689304, 909088, 1188784, 1542168, 1985704, 2538754, 3224208, 4069016, 5104496, 6367188, 7899568, 9750496 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Conjecture: satisfies a linear recurrence having signature (4, -4, 0, -6, 12, 6, -12, -9, -4, 28, -4, -9, -12, 6, 12, -6, 0, -4, 4, -1). - Harvey P. Dale, Apr 10 2019

REFERENCES

B. Broer, Hilbert series for modules of covariants, in Algebraic Groups and Their Generalizations..., Proc. Sympos. Pure Math., 56 (1994), Part I, 321-331.

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 0..9999

FORMULA

G.f.: 2*x / ((x-1)^10*(x+1)^2*(x^2+x+1)^4). - Colin Barker, Jul 27 2013

MATHEMATICA

CoefficientList[Series[(2x+4x^2+4x^3+4x^4+2x^5)/((1-x)^2(1-x^2)^3(1-x^3)^4 (1-x^4)), {x, 0, 40}], x] (* Harvey P. Dale, Apr 10 2019 *)

CROSSREFS

Sequence in context: A234933 A222808 A075216 * A006730 A131135 A292218

Adjacent sequences:  A127787 A127788 A127789 * A127791 A127792 A127793

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Apr 07 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 23:21 EDT 2019. Contains 323467 sequences. (Running on oeis4.)