login
A127773 * A002260 as infinite lower triangular matrices.
4

%I #12 Jun 18 2021 08:40:50

%S 1,3,6,6,12,18,10,20,30,40,15,30,45,60,75,21,42,63,84,105,126,28,56,

%T 84,112,140,168,196,36,72,108,144,180,216,252,288,45,90,135,180,225,

%U 270,315,360,405,55,110,165,220,275,330,385,440,495,550,66,132,198

%N A127773 * A002260 as infinite lower triangular matrices.

%C Triangular number transform of A002260.

%C Swapped order of the factors: A002260 * A127773 = A127778.

%H Harvey P. Dale, <a href="/A127777/b127777.txt">Table of n, a(n) for n = 1..1000</a>

%F T(n,k) = k*binomial(n+1,n-1) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+2-k,n-i), 1 <= k <= n. - _Mircea Merca_, Apr 11 2012

%e First few rows of the triangle:

%e 1;

%e 3, 6;

%e 6, 12, 18;

%e 10, 20, 30, 40;

%e 15, 30, 45, 60, 75;

%e ...

%p T(n,k):=piecewise(k<=n,k*binomial(n+1,n-1),n<k,0) # _Mircea Merca_, Apr 11 2012

%t Table[k*Binomial[n+1,n-1],{n,20},{k,n}]//Flatten (* _Harvey P. Dale_, Oct 26 2016 *)

%Y Cf. A000217, A127773, A000537 (row sums), A127778.

%K nonn,tabl,easy

%O 1,2

%A _Gary W. Adamson_, Jan 28 2007

%E More terms from _Harvey P. Dale_, Oct 26 2016