login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127682 Number of non-isomorphic (i.e., defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph having at least one symmetry axis. Also: Number of cyclic and palindromic compositions of n in which each term is either 2 or 3. 6
0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 4, 7, 5, 9, 7, 12, 9, 16, 12, 21, 16, 28, 21, 37, 28, 49, 37, 65, 49, 86, 65, 114, 86, 151, 114, 200, 151, 265, 200, 351, 265, 465, 351, 616, 465, 816, 616, 1081, 816, 1432, 1081, 1897, 1432, 2513, 1897, 3329, 2513, 4410, 3329 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, arXiv:070164 (2007) and JIS 11 (2008) 08.5.7.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,1).

FORMULA

a(n) = A000931(k+3) if n=2k-1 and a(n) = A000931(k+5) if n=2k.

a(n) = a(n-4) + a(n-6).

G.f.: -x^2*(x^4+x^3+x^2+x+1) / (x^6+x^4-1). - Colin Barker, Mar 29 2014

MATHEMATICA

Rest[CoefficientList[Series[-x^2*(x^4+x^3+x^2+x+1)/(x^6+x^4-1), {x, 0, 63}], x]] (* Vaclav Kotesovec, Mar 29 2014 *)

LinearRecurrence[{0, 0, 0, 1, 0, 1}, {0, 1, 1, 1, 1, 2}, 70] (* Harvey P. Dale, Jul 17 2014 *)

PROG

(PARI) concat(0, Vec(-x^2*(x^4+x^3+x^2+x+1)/(x^6+x^4-1) + O(x^100))) \\ Colin Barker, Mar 29 2014

CROSSREFS

Cf. A000931.

Sequence in context: A282537 A053267 A058768 * A127685 A127687 A024156

Adjacent sequences:  A127679 A127680 A127681 * A127683 A127684 A127685

KEYWORD

easy,nonn

AUTHOR

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 13:48 EDT 2020. Contains 335688 sequences. (Running on oeis4.)