login
a(n) = denominator of b(n), where b(1) = 1, b(n+1) = (sum{k=1 to n} b(k))/product{j=1 to n} b(j).
2

%I #9 Oct 10 2019 11:28:36

%S 1,1,1,1,2,4,6,15,35,119,221,1703,31571,444163,62571693,16130221953,

%T 31653658032799,1139752929797333269,190765682365696256860989,

%U 13391304481955883169111997465697

%N a(n) = denominator of b(n), where b(1) = 1, b(n+1) = (sum{k=1 to n} b(k))/product{j=1 to n} b(j).

%F For n >= 4, b(n) = 1 +(b(n-1)-1)/b(n-2).

%t f[l_List] := Append[l, Plus @@ l/Times @@ l];Denominator[Nest[f, {1}, 20]] (* _Ray Chandler_, Feb 13 2007 *)

%Y Cf. A127678.

%K easy,frac,nonn

%O 1,5

%A _Leroy Quet_, Jan 23 2007

%E Extended by _Ray Chandler_, Feb 13 2007