The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127671 Cumulant expansion numbers: Coefficients in expansion of log(1 + Sum_{k>=1} x[k]*(t^k)/k!). 14
 1, 1, -1, 1, -3, 2, 1, -4, -3, 12, -6, 1, -5, -10, 20, 30, -60, 24, 1, -6, -15, -10, 30, 120, 30, -120, -270, 360, -120, 1, -7, -21, -35, 42, 210, 140, 210, -210, -1260, -630, 840, 2520, -2520, 720, 1, -8, -28, -56, -35, 56, 336, 560, 420, 560, -336, -2520, -1680, -5040, -630, 1680, 13440, 10080, -6720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Connected objects from general (disconnected) objects. The row lengths of this array is p(n):=A000041(n) (partition numbers). In row n the partitions of n are taken in the Abramowitz-Stegun order. One could call the unsigned numbers |a(n,k)| M_5 (similar to M_0, M_1, M_2, M_3 and M_4 given in A111786, A036038, A036039, A036040 and A117506, resp.). The inverse relation (disconnected from connected objects) is found in A036040. (d/da(1))p_n[a(1),a(2),...,a(n)] = n b_(n-1)[a(1),a(2),...,a(n-1)], where p_n are the partition polynomials of the cumulant generator A127671 and b_n are the partition polynomials for A133314. - Tom Copeland, Oct 13 2012 See notes on relation to Appell sequences in a differently ordered version of this array A263634. - Tom Copeland, Sep 13 2016 Given a binomial Sheffer polynomial sequence defined by the e.g.f. exp[t * f(x)] = Sum_{n >= 0} p_n(t) * x^n/n!, the cumulants formed from these polynomials are the Taylor series coefficients of f(x) multipied by t. An example is the sequence of the Stirling polynomials of the first kind A008275 with f(x) = log(1+x), so the n-th cumulant is (-1)^(n-1) * (n-1)! * t. - Tom Copeland, Jul 25 2019 REFERENCES C. Itzykson and J.-M. Drouffe, Statistical field theory, vol. 2, p. 413, eq.(13), Cambridge University Press, (1989). LINKS M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2. Wolfdieter Lang, First 10 rows of cumulant numbers and polynomials. FORMULA E.g.f. for multivariate row polynomials A(t) := log(1 + Sum_{k>=1} x[k]*(t^k)/k!). Row n polynomial p_n(x,...,x[n]) = [(t^n)/n!]A(t). a(n,m) = A264753(n, m) * M_3(n,m) with M_3(n,m) = A036040(n,m) (Abramowitz-Stegun M_3 numbers). - corrected by Johannes W. Meijer, Jul 12 2016 p_n(x,...,x[n]) = -(n-1)!*F(n,x,x/2!,..,x[n]/n!) in terms of the Faber polynomials F(n,b1,..,bn) of A263916. - Tom Copeland, Nov 17 2015 With D = d/dz and M(0) = 1, the differential operator R = z + d(log(M(D))/dD = z + d(log(1 + x D + x D^2/2! + ...))/dD = z + p.*exp(p.D) = z + Sum_{n>=0} p_(n+1)(x,..,x[n]) D^n/n! is the raising operator for the Appell sequence A_n(z) = (z + x[.])^n = Sum_{k=0..n} binomial(n,k) x[n-k] z^k with the e.g.f. M(t) e^(zt), i.e., R A_n(z) = A_(n+1)(z) and dA_n(z)/dz = n A_(n-1)(z). The operator Q = z - p.*exp(p.D) generates the Appell sequence with e.g.f. e^(zt) / M(t). - Tom Copeland, Nov 19 2015 EXAMPLE Row n=3: [1,-3,2] stands for the polynomial 1*x - 3*x*x + 2*x^3 (the Abramowitz-Stegun order of the p(3)=3 partitions of n=3 is ,[1,2],[1^3]). CROSSREFS Cf. A133314, A263916, A263634. Cf. A008275. Sequence in context: A077427 A107641 A299352 * A271724 A247641 A261876 Adjacent sequences:  A127668 A127669 A127670 * A127672 A127673 A127674 KEYWORD sign,easy,tabf AUTHOR Wolfdieter Lang, Jan 23 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 12:56 EDT 2020. Contains 335400 sequences. (Running on oeis4.)