OFFSET
1,1
COMMENTS
Based on empirical evidence, approximately 98.9 % of the infinitary aliquot sequences generated by the odd integers are monotonically decreasing. This sequence represents the 1.1 % of odd integers that are the exceptions to this.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
EXAMPLE
a(5)=2823 because 2823 is the fifth odd integer whose infinitary aliquot sequence is not monotonically decreasing.
MATHEMATICA
ExponentList[n_Integer, factors_List]:={#, IntegerExponent[n, # ]}&/@factors; InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g]==g][ #, Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #, factors]&/@d]], _?(And@@#&), {1}]] ]] ] Null; properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k; g[n_] := If[n > 0, properinfinitarydivisorsum[n], 0]; iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; u[n_]:=Table[n[[k+1]]<n[[k]], {k, 1, Length[n]-1}]; v[n_]:=If[ !MemberQ[u[n], False], True, False]; data=iTrajectory/@Range[1, 10^4, 2]; First/@Select[data, !v[ # ] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ant King, Jan 26 2007
EXTENSIONS
More terms from Amiram Eldar, Sep 16 2019
STATUS
approved