%I #19 Mar 16 2019 06:55:30
%S 114,126,594,846,1140,1260,4320,5940,7920,8460,8640,10744,10856,11760,
%T 12285,13500,14595,17700,25728,35712,43632,44772,45888,49308,60858,
%U 62100,62700,67095,67158,71145,73962,74784,79296,79650,79750,83142,83904,86400,88730
%N Infinitary amicable numbers.
%H Graeme L. Cohen, <a href="http://dx.doi.org/10.1090/S0025-5718-1990-0993927-5">On an integer's infinitary divisors</a>, Math. Comp., 54 (1990), 395-411.
%H J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Broken link]
%H J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Via Internet Archive Wayback-Machine]
%H J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a> [Cached copy, pdf file only]
%F Non-infinitary perfect numbers which satisfy A126168(A126168(n)) = n.
%e a(5)=1140 because 1140 is the fifth infinitary amicable number.
%t ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],_?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum,k,2]==k && !properinfinitarydivisorsum[k]==k,True,False];Select[Range[50000],InfinitaryAmicableNumberQ[ # ] &]
%t fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k != n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* _Amiram Eldar_, Mar 16 2019 *)
%Y Cf. A007357, A126168, A127661, A127662, A127663, A127665, A127666, A127667, A126169, A126170, A126171.
%K nonn
%O 1,1
%A _Ant King_, Jan 26 2007
%E More terms from _Amiram Eldar_, Mar 16 2019