login
A127660
Integers whose exponential aliquot sequences end in an exponential amicable pair.
6
90972, 100548, 454860, 502740, 937692, 968436, 1000692, 1106028, 1182636, 1307124, 1383732, 1536416, 1546524, 1709316, 2092356, 2312604, 2502528, 2638188, 2690100, 2820132, 2915892, 3116988, 3365964, 3720276, 3729852, 3907008, 3911796, 4122468, 4248552, 4275684
OFFSET
1,1
COMMENTS
Sometimes called the exponential 2-cycle attractor set. The first 10 terms of this sequence are the same as the first 10 terms of A127659.
LINKS
Peter Hagis, Jr., Some results concerning exponential divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
EXAMPLE
a(11) = 1383732 because the eleventh integer whose exponential aliquot sequence ends in an exponential amicable pair is 1383732.
MATHEMATICA
ExponentialDivisors[1]={1}; ExponentialDivisors[n_]:=Module[{}, {pr, pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows], List]; Sort[Times@@(pr^Transpose[divpowers])]]; se[n_]:=Plus@@ExponentialDivisors[n]-n; g[n_] := If[n > 0, se[n], 0]; eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; ExponentialAmicableNumberQ[k_]:=If[Nest[se, k, 2]==k && !se[k]==k, True, False]; Select[Range[5 10^6], ExponentialAmicableNumberQ[Last[eTrajectory[ # ]]] &]
f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-2]] != v[[-1]] > 0 && v[[-3]] == v[[-1]]]; Select[Range[10^6], q] (* Amiram Eldar, Mar 11 2023 *)
CROSSREFS
Subsequences: A127659, A126165, A126166.
Sequence in context: A183677 A015316 A212853 * A127659 A126165 A323753
KEYWORD
nonn
AUTHOR
Ant King, Jan 25 2007
STATUS
approved