login
A127620
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 6 with the steps (1,0), (0, 1), (2,0) and (0,2).
3
1, 1, 5, 22, 117, 654, 3843, 22882, 137443, 827998, 4995443, 30155494, 182083275, 1099560942, 6640309323, 40101959542, 242184540139, 1462610652718, 8833070227499, 53345145429670, 322164911643723, 1945636121710110
OFFSET
0,3
FORMULA
G.f.: (1 - 5x - 6x^2 + 11x^3 + 12x^4 - 4x^5)/(1 - 6x - 5x^2 + 24x^3 + 28x^4 + 6x^5 - 8x^6). [corrected by Jean-François Alcover, Apr 02 2019]
EXAMPLE
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
MATHEMATICA
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 6];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-1, k]* T[n-1, k] + b[n-2, k]*T[n-2, k] + b[n, k-1]*T[n, k-1] + b[n, k-2]*T[n, k-2]; T[_, _] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 21}]
(* or: *)
LinearRecurrence[{6, 5, -24, -28, -6, 8}, {1, 1, 5, 22, 117, 654}, 22] (* Jean-François Alcover, Apr 02 2019 *)
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
Arvind Ayyer, Jan 20 2007
STATUS
approved