OFFSET
0,3
LINKS
Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Points, arXiv:math/0610734 [math.CO], 2006-2007.
Index entries for linear recurrences with constant coefficients, signature (5, 6, -11, -12, 4).
FORMULA
G.f.: (1-4x-6x^2+2x^3)/(1-5x-6x^2+11x^3+12x^4-4x^5). [Typo corrected by Jean-François Alcover, Dec 10 2018]
EXAMPLE
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
MATHEMATICA
LinearRecurrence[{5, 6, -11, -12, 4}, {1, 1, 5, 22, 117}, 22] (* Jean-François Alcover, Dec 10 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n - k <= 5];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[_, _] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 03 2019 *)
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
Arvind Ayyer, Jan 20 2007
STATUS
approved