login
A127610
a(n) = floor(( (n+1)/2 )^n) - n!.
3
0, 0, 0, 2, 15, 123, 1118, 11344, 127831, 1590245, 21700716, 322880256, 5209007463, 90661989607, 1694616510154, 33876697720832, 721588072472639, 16321494271570569, 390811944752490542, 9878354899591168000, 262896868506265373394, 7349159002086450661211
OFFSET
0,4
COMMENTS
Theorem (Cauchy): ((n+1)/2)^n > n! for n >= 2.
REFERENCES
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 192, 3.1.14.
LINKS
MATHEMATICA
A127610[n_] := Floor[((n+1)/2)^n] - n!;
Array[A127610, 25, 0] (* Paolo Xausa, Jan 29 2024 *)
CROSSREFS
Cf. A127426.
Sequence in context: A052448 A168502 A369108 * A085228 A365157 A341726
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 03 2007
STATUS
approved