login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127582 a(n) = the smallest prime number of the form k*2^n - 1, for k >= 1. 3
2, 3, 3, 7, 31, 31, 127, 127, 1279, 3583, 5119, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Robert Israel, Table of n, a(n) for n = 0..3310

FORMULA

a(n) << 37^n by Xylouris's improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

EXAMPLE

a(0)=2 because 2 = 3*2^0 - 1 is prime.

a(1)=3 because 3 = 2*2^1 - 1 is prime.

a(2)=3 because 3 = 1*2^2 - 1 is prime.

a(3)=7 because 7 = 1*2^3 - 1 is prime.

a(4)=31 because 31 = 2*2^4 - 1 is prime.

MAPLE

p:= 2: A[0]:= 2:

for n from 1 to 100 do

  if p+1 mod 2^n = 0 then A[n]:= p

  else

    p:=p+2^(n-1);

    while not isprime(p) do p:= p+2^n od:

    A[n]:= p;

  fi

od:

seq(A[i], i=0..100); # Robert Israel, Jan 13 2017

MATHEMATICA

a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 0, 50}]; a - Artur Jasinski, Jan 19 2007

CROSSREFS

Cf. A007522, A127575-A127581, A127583-A127587.

A087522 is identical except for a(1).

Sequence in context: A176022 A316275 A113031 * A157144 A096714 A078035

Adjacent sequences:  A127579 A127580 A127581 * A127583 A127584 A127585

KEYWORD

nonn

AUTHOR

Artur Jasinski, Jan 19 2007

EXTENSIONS

Edited by Don Reble, Jun 11 2007

Further edited by N. J. A. Sloane, Jul 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 06:57 EDT 2019. Contains 323386 sequences. (Running on oeis4.)