The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127546 a(n) = F(n)^2 + F(n+1)^2 + F(n+2)^2, where F(n) denotes the n-th Fibonacci number. 3
 2, 6, 14, 38, 98, 258, 674, 1766, 4622, 12102, 31682, 82946, 217154, 568518, 1488398, 3896678, 10201634, 26708226, 69923042, 183060902, 479259662, 1254718086, 3284894594, 8599965698, 22515002498, 58945041798, 154320122894, 404015326886, 1057725857762 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The following conjecture, if not already well-known, is probably easy to prove: a(n) = 3a(n-1)-a(n-2)-2(-1)^n, for n=4,5,6,... . (This has been verified up to n=1000.) a(n)=2*A061646(n+1) = 4*F(n+1)^2-2*(-1)^(n+1). - Emeric Deutsch, Apr 04 2007, Gary Detlefs, Nov 27 2010 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Shalosh B. Ekhad and Doron Zeilberger, Automatic Counting of Tilings of Skinny Plane Regions, arXiv preprint arXiv:1206.4864, 2012. FORMULA a(n) = 2*(F(n)^2+F(n+1)^2+F(n)*F(n+1)). - Emeric Deutsch, Apr 04 2007 G.f.: 2(1+x-x^2)/((1+x)(1-3x+x^2)). - R. J. Mathar, Nov 25 2008 EXAMPLE a(2)=14 because F(2)^2+F(3)^2+F(4)^2=1+4+9=14. MAPLE with(combinat): a:=n->fibonacci(n)^2+fibonacci(n+1)^2+fibonacci(n+2)^2: seq(a(n), n=0..32); # Emeric Deutsch, Apr 04 2007 A000045 := proc(n) combinat[fibonacci](n) ; end: A127546 := proc(n) add( A000045(i+1)^2, i=n..n+2) ; end: for n from 1 to 33 do printf("%d, ", A127546(n)) ; od ; # R. J. Mathar, Apr 03 2007 with(combinat): seq(4*fibonacci(n+1)^2-2*(-1)^n, n=0..29) MATHEMATICA Total/@(Partition[Fibonacci[Range[0, 30]], 3, 1]^2) (* Harvey P. Dale, Oct 20 2011 *) PROG (PARI) for(n=0, 10, print1(4*fibonacci(n+1)^2-2*(-1)^n, ", ")) CROSSREFS Cf. A061646. Sequence in context: A275208 A000634 A006654 * A192484 A217861 A188492 Adjacent sequences:  A127543 A127544 A127545 * A127547 A127548 A127549 KEYWORD nonn AUTHOR Simone Severini, Apr 01 2007 EXTENSIONS Edited and extended by R. J. Mathar, Emeric Deutsch and John W. Layman, Apr 09 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 19:10 EST 2020. Contains 332308 sequences. (Running on oeis4.)