login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127477 Triangle T(n,k) read by rows: matrix product A054522 * A054523. 2
1, 2, 1, 5, 0, 2, 6, 3, 0, 2, 17, 0, 0, 0, 4, 10, 5, 4, 0, 0, 2, 37, 0, 0, 0, 0, 0, 6, 22, 11, 0, 6, 0, 0, 0, 4, 41, 0, 14, 0, 0, 0, 0, 0, 6, 34, 17, 0, 0, 8, 0, 0, 0, 0, 4, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 30, 15, 12, 10, 0, 6, 0, 0, 0, 0, 0, 4, 145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 74, 37, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the two matrices A054522 and A054523 are commuted, the matrix product becomes A127478.

LINKS

Table of n, a(n) for n=1..94.

FORMULA

T(n,k) = sum_{j=k..n} A054522(n,j) * A054523(j,k).

sum_{k=1..n} T(n,k) = A057660(n) (row sums).

T(n,n) = A000010(n) (diagonal).

T(n,1) = A029939(n).

EXAMPLE

First few rows of the triangle are:

1;

2, 1;

5, 0, 2;

6, 3, 0, 2;

17, 0, 0, 0, 4;

10, 5, 4, 0, 0, 2;

37, 0, 0, 0, 0, 0, 6;

22, 11, 0, 6, 0, 0, 0, 4;

MAPLE

A054522 := proc(n, k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:

A054523 := proc(n, k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:

A127477 := proc(n, k) add( A054522(n, j)*A054523(j, k), j=k..n) ; end: seq(seq( A127477(n, k), k=1..n), n=1..15) ;

CROSSREFS

Cf. A054522, A054523, A057660, A000010, A029939.

Sequence in context: A093876 A322334 A198371 * A104505 A324185 A175958

Adjacent sequences:  A127474 A127475 A127476 * A127478 A127479 A127480

KEYWORD

nonn,tabl,easy

AUTHOR

Gary W. Adamson, Jan 15 2007

EXTENSIONS

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 11 03:12 EDT 2021. Contains 342886 sequences. (Running on oeis4.)