login
A127443
Primes p such that 6p - 11 and 6p + 11 are also primes.
0
3, 5, 7, 13, 23, 37, 47, 83, 97, 107, 127, 167, 197, 257, 313, 383, 397, 457, 463, 587, 653, 673, 677, 827, 863, 967, 1013, 1063, 1093, 1237, 1567, 1637, 1783, 1787, 1847, 1877, 1913, 2267, 2273, 2393, 2633, 2707, 2777, 2837, 2927, 2953, 3023, 3037, 3257
OFFSET
1,1
EXAMPLE
7, 6*7 - 11 = 31, and 6*7 + 11 = 53 are all primes.
MATHEMATICA
Select[Range[5000], PrimeQ[ # ] && PrimeQ[6# + 11] && PrimeQ[6# - 11] &]
Select[Prime[Range[500]], AllTrue[6#+{11, -11}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 07 2015 *)
PROG
(Magma) [ p: p in PrimesUpTo(9000) | IsPrime(6*p-11) and IsPrime(6*p+11)] // Vincenzo Librandi, Jan 29 2011
CROSSREFS
Subsequence of A089438.
Sequence in context: A085013 A164939 A125272 * A003229 A077949 A077974
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Mar 31 2007
STATUS
approved