login
A127339
Numbers that are the sum of 12 consecutive primes.
9
197, 236, 276, 318, 364, 412, 460, 510, 562, 612, 662, 714, 766, 822, 880, 936, 990, 1040, 1092, 1152, 1212, 1276, 1336, 1402, 1464, 1524, 1586, 1650, 1716, 1786, 1854, 1918, 1980, 2040, 2100, 2162, 2234, 2304, 2370, 2436, 2502, 2564, 2634, 2700, 2770
OFFSET
1,1
COMMENTS
a(n) = absolute value of coefficient of x^11 of the polynomial Product_{j=0..11} (x - prime(n+j)) of degree 12; the roots of this polynomial are prime(n), ..., prime(n+11).
MATHEMATICA
a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 11}]], {x, 1, 50}]; a
Total/@Partition[Prime[Range[60]], 12, 1] (* Harvey P. Dale, May 05 2018 *)
PROG
(PARI) {m=45; k=12; for(n=1, m, print1(a=sum(j=0, k-1, prime(n+j)), ", "))} \\ Klaus Brockhaus, Jan 13 2007
(PARI) {m=45; k=12; for(n=1, m, print1(abs(polcoeff(prod(j=0, k-1, (x-prime(n+j))), k-1)), ", "))} \\ Klaus Brockhaus, Jan 13 2007
(Magma) [&+[ NthPrime(n+k): k in [0..11] ]: n in [1..100] ]; // Vincenzo Librandi, Apr 03 2011
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 13 2007
STATUS
approved