login
A127243
Triangle whose k-th column is generated by (1+A010060(1+k)x)*x^k.
3
1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
EXAMPLE
Triangle begins:
1;
1, 1;
0, 1, 1;
0, 0, 0, 1;
0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
...
MATHEMATICA
T[n_, k_] := SeriesCoefficient[(1 + ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
CROSSREFS
Inverse is A127244.
Row sums are 1+A010060(n) = A001285(n).
Sequence in context: A090174 A165556 A348292 * A127248 A266298 A265695
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 10 2007
EXTENSIONS
More terms from Amiram Eldar, Aug 04 2023
STATUS
approved