|
|
A127226
|
|
a(0)=2, a(1)=2, a(n) = 2*a(n-1) + 6*a(n-2).
|
|
4
|
|
|
2, 2, 16, 44, 184, 632, 2368, 8528, 31264, 113696, 414976, 1512128, 5514112, 20100992, 73286656, 267179264, 974078464, 3551232512, 12946935808, 47201266688, 172084148224, 627375896576, 2287256682496
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..22.
|
|
FORMULA
|
G(x) = 2*(1-x)/(1-6x-2x^2);
E(x) = (exp((1+sqrt(7))x) + exp((1-sqrt(7))x));
a(n) = A083099(n) + 6*A083099(n-2).
a(n) = (1+sqrt(7))^n + (1-sqrt(7))^n, with n >= 0. - Paolo P. Lava, Jul 31 2008
G.f.: G(0), where G(k)= 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
|
|
PROG
|
(Sage) [lucas_number2(n, 2, -6) for n in range(0, 23)] # Zerinvary Lajos, Apr 30 2009
|
|
CROSSREFS
|
Cf. A083099.
Sequence in context: A230800 A076615 A098777 * A001119 A216387 A062282
Adjacent sequences: A127223 A127224 A127225 * A127227 A127228 A127229
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Miklos Kristof, Mar 26 2007
|
|
STATUS
|
approved
|
|
|
|