login
a(1)=a(2)=1. a(n) = smallest possible (product of b(k)'s + product of c(k)'s), where the sequence's terms a(1) through a(n-1) are partitioned somehow into {b(k)} and {c(k)}.
2

%I #9 Apr 08 2022 00:43:46

%S 1,1,2,3,5,11,37,221,3361,190777,83199527,760382931109,

%T 662056785094857629,538451433632092674800570837,

%U 12495147956629620251492228703104952798089,1397663545252630798358314360015943050984074671707253231083973

%N a(1)=a(2)=1. a(n) = smallest possible (product of b(k)'s + product of c(k)'s), where the sequence's terms a(1) through a(n-1) are partitioned somehow into {b(k)} and {c(k)}.

%C Every term of the sequence is coprime to every other term.

%H Max Alekseyev, <a href="/A127181/b127181.txt">Table of n, a(n) for n = 1..30</a>

%e By partitioning (a(1),a(2),...a(7)) = (1,1,2,3,5,11,37) into {b(k)} and {c(k)} so that {b(k)} = (1,2,5,11) and {c(k)} = (1,3,37), then (product of b(k)'s + product of c(k)'s) is minimized. Therefore a(8) = 1*2*5*11 + 1*3*37 = 221.

%t Nest[ Module[ {prod=Times@@#1}, Append[ #,Min[ #+prod/#&/@Times@@@Union[ Subsets[ # ] ] ] ] ]&,{1,1,2,3},11 ] (Peter Pein (petsie(AT)dordos.net), Jan 07 2007)

%Y Cf. A127180.

%K nonn

%O 1,3

%A _Leroy Quet_, Jan 07 2007

%E a(10)-a(15) from Peter Pein (petsie(AT)dordos.net), Jan 07 2007

%E a(16)-a(30) from _Max Alekseyev_, Apr 08 2022