login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Q(2,n), where Q(m,k) is defined in A127080 and A127137,
4

%I #11 Jan 31 2020 09:37:12

%S 1,1,0,-3,-4,15,48,-105,-624,945,9600,-10395,-175680,135135,3790080,

%T -2027025,-95235840,34459425,2752081920,-654729075,-90328089600,

%U 13749310575,3328103116800,-316234143225,-136191650918400,7905853580625,6131573025177600,-213458046676875,-301213549769932800

%N Q(2,n), where Q(m,k) is defined in A127080 and A127137,

%D V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

%H G. C. Greubel, <a href="/A127144/b127144.txt">Table of n, a(n) for n = 0..500</a>

%F See A127080 for e.g.f.

%p Q:= proc(n, k) option remember;

%p if k<2 then 1

%p elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)

%p else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n

%p fi; end;

%p seq( Q(2, n), n=0..30); # _G. C. Greubel_, Jan 30 2020

%t Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[2, k], {k,0,30}] (* _G. C. Greubel_, Jan 30 2020 *)

%o (Sage)

%o @CachedFunction

%o def Q(n,k):

%o if (k<2): return 1

%o elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)

%o else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n

%o [Q(2,n) for n in (0..30)] # _G. C. Greubel_, Jan 30 2020

%Y A126967 interleaved with A001147.

%Y Column 2 of A127080.

%Y Cf. A127137, A127138, A127145.

%K sign

%O 0,4

%A _N. J. A. Sloane_, Mar 24 2007