login
A127119
Triangle read by rows: T(n,k) = number of endofunctions on a set with n elements, where the maximum indegree is k.
2
1, 2, 1, 3, 3, 1, 5, 10, 3, 1, 7, 24, 12, 3, 1, 11, 64, 39, 12, 3, 1, 15, 149, 122, 41, 12, 3, 1, 22, 366, 368, 138, 41, 12, 3, 1, 30, 857, 1092, 439, 140, 41, 12, 3, 1, 42, 2050, 3179, 1395, 455, 140, 41, 12, 3, 1, 56, 4828, 9160, 4326, 1467, 457, 140, 41, 12, 3, 1
OFFSET
1,2
COMMENTS
The number of endofunctions with indegree <= k is given by the Euler transform of the number of connected endofunctions with indegree <= k. - Andrew Howroyd, Feb 21 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
EXAMPLE
For n = 3, the 7 endofunctions are (1,2,3) -> (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,3), (1,3,2) and (2,3,1). In the first, node 1 has indegree 3, the next 3 have node 1 with indegree 2 and the final 3 are permutations, each node having indegree 1. So row 3 of the triangle is 3,3,1.
The triangle starts:
1
2 1
3 3 1
5 10 3 1
7 24 12 3 1
PROG
(PARI) \\ Here R(n, k) gives column k of A299038 as series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
MSetUptoK(g, k)={my(n=serprec(g, x)); polcoef(if(k==0, 1, exp( sum(i=1, k, (y^i + O(y*y^k))*subst(g + O(x*x^(n\i)), x, x^i)/i )))/(1 - y) + O(y*y^k), k, y) + O(x^n)}
CIK(p, n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
R(n, k)={my(p=O(x)); for(n=1, n, p=x*MSetUptoK(p, k)); p}
F(n)={my(M=Mat(vector(n, k, EulerT(Vec(CIK(x*MSetUptoK(R(n, k), k-1), n)))~))); M-matconcat([vectorv(#M), M[, 1..n-1]])}
{ my(A=F(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Feb 21 2020
CROSSREFS
Sequence in context: A122075 A185675 A153341 * A322265 A066704 A262917
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Terms a(46) and beyond from Andrew Howroyd, Feb 21 2020
STATUS
approved