This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127053 Expansion of 1/(1+9*x*c(x)), where c(x) = g.f. for Catalan numbers A000108. 7
 1, -9, 72, -585, 4734, -38358, 310662, -2516481, 20383110, -165104478, 1337341896, -10832484474, 87743071332, -710719065000, 5756823757890, -46630274845905, 377705217526470, -3059412293786310, 24781239462988800, -200728040080084110, 1625897123058144420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is (-9)^n. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k=0..n} A039599(n,k)*(-10)^k. G.f.: 2/(11 - 9*sqrt(1-4*x)). - G. C. Greubel, May 28 2019 MAPLE c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+9*x*c), x=0, 24): seq(coeff(ser, x, n), n=0..21); # Emeric Deutsch, Mar 23 2007 MATHEMATICA CoefficientList[Series[2/(11-9*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 28 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec(2/(11-9*sqrt(1-4*x))) \\ G. C. Greubel, May 28 2019 (MAGMA) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(11-9*Sqrt(1-4*x)) )); // G. C. Greubel, May 28 2019 (Sage) (2/(11-9*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019 CROSSREFS Cf. A000108, A039599. Sequence in context: A003951 A252702 A033135 * A001809 A006135 A180836 Adjacent sequences:  A127050 A127051 A127052 * A127054 A127055 A127056 KEYWORD sign AUTHOR Philippe Deléham, Mar 21 2007 EXTENSIONS More terms from Emeric Deutsch, Mar 23 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:11 EDT 2019. Contains 328267 sequences. (Running on oeis4.)