login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126963 Numerators of sequence defined by f(0)=1, f(1)=5/4; f(n) = ( (6*n-1)*f(n-1) - (2*n-1)*f(n-2) )/(4n). 2
1, 5, 43, 177, 2867, 11531, 92479, 370345, 11857475, 47442055, 379582629, 1518418695, 24295375159, 97182800711, 777467420263, 3109879375897, 199032580597603, 796130905791967, 6369049515119561, 25476202478636219, 407619274119811709, 1630477163761481141 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

D. Doster, Problem 1318, Three Term Recurrence, Math. Magazine, 63 (1990), 127-128.

FORMULA

f(n) = Sum_{k=0..n} binomial(-1/2,k)*(-1/2)^k.

f(n) -> sqrt(2) as n -> oo.

G.f.: (sqrt(-x)*arccsc(1-x)/sqrt(2)-(Pi*i*sqrt(x))/sqrt(2)^3)/x. - Vladimir Kruchinin, Oct 10 2012

a(n) = numerator( Sum_{k=0..n} binomial(2*k, k)/8^k ). - G. C. Greubel, Jan 29 2020

MAPLE

seq( numer( add(binomial(2*k, k)/8^k, k=0..n) ), n=0..25); # G. C. Greubel, Jan 29 2020

MATHEMATICA

a[n_] := Sqrt[2](1-(Gamma[1/2+n] Hypergeometric2F1[n, 1/2+n, 1+n, -1])/(Sqrt[Pi] Gamma[1+n])); Table[Numerator[FullSimplify[a[n]]], {n, 20}] (* Gerry Martens, Aug 09 2015 *)

f[n_]:= If[n==0, 1, If[n==1, 5/4, ((6*n-1)*f[n-1]-(2*n-1)*f[n-2])/(4*n)]];

Table[Numerator[f[n]], {n, 0, 25}] (* G. C. Greubel, Jan 29 2020 *)

PROG

(PARI) A126963(n)=numerator(sum(k=0, n, binomial(-1/2, k)/(-2)^k)) \\ f(n)=if(n>1, ((6*n-1)*f(n-1)-(2*n-1)*f(n-2))/(4*n), (5/4)^n) yields the same results. - M. F. Hasler, Aug 11 2015

(Magma) [Numerator( &+[Binomial(2*k, k)/8^k: k in [0..n]] ): n in [0..25]]; // G. C. Greubel, Jan 29 2020

(Sage) [numerator( sum(binomial(2*k, k)/8^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Jan 29 2020

(GAP) List([0..25], n-> NumeratorRat( Sum([0..n], k-> Binomial(2*k, k)/8^k) )); # G. C. Greubel, Jan 29 2020

CROSSREFS

Denominators are in A088802.

Sequence in context: A152866 A102851 A173554 * A221874 A317282 A182191

Adjacent sequences: A126960 A126961 A126962 * A126964 A126965 A126966

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Mar 20 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)