|
|
A126863
|
|
S(1)={1}. S(n) = {S(n-1) {1,2,...,(n-1),n,(n-1),...,2,1} S(n-1)}, where S(n) is a string of the first 3*2^n -2*n -3 terms of the sequence.
|
|
0
|
|
|
1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
S(n) consists of the first 3*2^n - 2*n - 3 terms of the sequence, i.e. S(n) consists of A050488(n) terms.
Each S(n) forms a palindrome.
|
|
LINKS
|
Table of n, a(n) for n=1..105.
|
|
EXAMPLE
|
S(1) = {1}.
S(2) = {1,1,2,1,1}.
S(3) = {1,1,2,1,1,1,2,3,2,1,1,1,2,1,1}.
S(4) = {1,1,2,1,1,1,2,3,2,1,1,1,2,1,1,1,2,3,4,3,2,1,1,1,2,1,1,1,2,3,2,1,1,1,2,1,1},
etc.
|
|
CROSSREFS
|
Cf. A050488.
Sequence in context: A088863 A053283 A035669 * A106806 A178526 A039958
Adjacent sequences: A126860 A126861 A126862 * A126864 A126865 A126866
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Leroy Quet, Mar 15 2007
|
|
STATUS
|
approved
|
|
|
|