|
|
A126832
|
|
Ramanujan numbers (A000594) read mod 5.
|
|
6
|
|
|
1, 1, 2, 3, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 1, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 4, 1, 0, 1, 1, 0, 4, 0, 2, 2, 2, 1, 0, 2, 1, 2, 3, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 4, 1, 3, 4, 0, 2, 0, 2, 1, 0, 0, 2, 4, 0, 0, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 2, 1, 4, 1, 0, 2, 1, 3, 4, 0, 2, 2, 2, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..10000
R. P. Bambah and S. Chowla, Congruence properties of Ramanujan’s function tau(n), Bull. Amer. Math. Soc. 53 (1947), 950-955.
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
|
|
FORMULA
|
a(n) = n*sigma(n) mod 5. - Michel Marcus, Apr 26 2016. See also the Hardy reference, p. 166, (10.5.2), with a proof. - Wolfdieter Lang, Feb 03 2017
|
|
MATHEMATICA
|
Mod[RamanujanTau@ #, 5] & /@ Range@ 105 (* Michael De Vlieger, Apr 26 2016 *)
|
|
CROSSREFS
|
Cf. A000594, A064987.
Cf. this sequence (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).
Sequence in context: A059066 A059067 A065861 * A068908 A226192 A113407
Adjacent sequences: A126829 A126830 A126831 * A126833 A126834 A126835
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Feb 25 2007
|
|
STATUS
|
approved
|
|
|
|